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High Pressure Phase Equilibria for Vapour Phase 
Extraction Processes 

K. STEPHAN and K. H. SCHABER 
INSTITUT FCR TECHNISCHE T H E R M O D Y N A M ~ K  UND THERMISCHE 

UNIVERSITAT STUTTGART 
VERFAHRENSTECHNIK 

7000 STUTTGART 80,  GERMANY 

ABSTRACT 

For t h e  d e s i g n  of s e p a r a t i o n  p r o c e s s e s  w i t h  s u p e r c r i t i c a l  dense 
g a s e s ,  r e f e r r e d  t o  as vapour  phase  e x t r a c t i o n  p r o c e s s e s ,  high-pres-  
s u r e  vapour - l iqu id  e q u i l i b r i a  have  t o  b e  known. I n  t h e  p r e s e n t  i n -  
v e s t i g a t i o n  t h e  Redlich-Kwong e q u a t i o n  o f  s t a t e  h a s  been  a p p l i e d  t o  
a p a r a m e t r i c  s t u d y  o f  h i g h - p r e s s u r e  phase  e q u i l i b r i a .  The s t u d y h a s  
developed a g e n e r a l i z e d  d e s c r i p t i o n  of t h e  phase  behav iour  o f b i n a r y  
and multicomponent sys t ems  and p rov ided  g e n e r a l  r u l e s  f o r  t h e d e s i g n  
of vapour  phase  e x t r a c t i o n  p r o c e s s e s .  

INTRODUCTION 

During t h e  l a s t  few y e a r s  s e p a r a t i o n  p r o c e s s e s  r e f e r r e d  t o  a s  

" e x t r a c t i o n  w i t h  dense  gases" ,  " e x t r a c t i o n  w i t h  s u p e r c r i t i c a l  gases"  

o r  "gas e x t r a c t i o n "  have  grown more and more impor t an t .  They a r e  

e s p e c i a l l y  s u i t a b l e  f o r  t h e  s e p a r a t i o n  of low v o l a t i l e  s u b s t a n c e s  

which decompose b e f o r e  r e a c h i n g  t h e i r  b o i l i n g  p o i n t s .  These pro-  

c e s s e s  are based  on t h e  phenomenon t h a t  s u p e r c r i t i c a l  g a s e s  can  

d i s s o l v e  s u b s t a n c e s  of low v o l a t i l i t y .  Compared w i t h  normal  p re s -  

s u r e s  a l a r g e  i n c r e a s e  i n  v o l a t i l i t y  c a n  b e  o b t a i n e d  a t  h i g h  p r e s -  

s u r e  under  f a v o u r a b l e  c o n d i t i o n s .  

Var ious  a p p l i c a t i o n s  o f  s u p e r c r i t i c a l  g a s e s  f o r  s e p a r a t i n g  

m i x t u r e s  have been d i s c u s s e d  by E l l i s  ( l ) ,  P a u l  and Wise (2), P e t e r ,  
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236 STEPHAN AND SCHABER 

Brunner and Riha ( 3 ) ,  P i l z  ( 4 ) ,  Riha ( 5 ) ,  Zose l  (61 ,  S t a h l  and 

~ c h i l z  ( 7 ) ,  Whitehead and W i l l i a m s  ( 8 )  and Cango l i  and Thodos (9) 

A knowledge of phase  e q u i l i b r i a  a t  h i g h  p r e s s u r e s  is e s s e n t i a l  

for  t h e  t i nde r s t and ing  of vapour  phase  e x t r a c t i o n  p r o c e s s e s .  By con- 

~ ~ i d e r i n g  t h e  t y p i c a l  behav iour  of b i n a r y  m i x t u r e s  c o n s i s t i n g  of a 

s u p e r c r i t i c a l  g a s  and  a heavy component, one c a n  e x p l a i n  t h e  d i s -  

s o l v i n g  phenomenon of t h e  s u p e r c r i t i c a l  g a s .  Such sys t ems  h a v e b e e n  

i n v e s t i g a t e d  by s e v e r a l  a u t h o r s  i n  t h e  l as t  few y e a r s  ( 3 ,  1 0 -  16) .  

llowever, t o  i n v e s t i g a t e  t e c h n i c a l  p r o c e s s e s  f o r  s e p a r a t i n g  two o r  

more l o w  v o l a t i l e  components by means o f  a s u p e r c r i t i c a l  g a s ,  t h e  

behav icu r  o f  multicomponent m i x t u r e s  h a s  t o  b e  c o n s i d e r e d .  

T h e  purpose of t h e  p r e s e n t  i n v e s t i g a t i o n  is  t o  deve lop  a sys -  

t e m a t i c  d e s c r i p t i o n  of t h e  behav iour  of  multicomponent m i x t u r e s  by 

means of a s i m p l e  and w e l l  s u i t e d  e q u a t i o n  of s ta te .  I t  w i l l  b e  

.;hewn t h d t  t h e  p h a s e  behav iour  o f  b i n a r y  and m u l t i c o m p o n e n t n i x t u r e s  

r a n  be c h a r a c t e r i z e d  by a few d i m e n s i o n l e s s  pa rame te r s  and t h a t  

g e n e r a l  c o r r e l a t i o n s  f o r  vapour  phase  e x t r a c t i o n  p r o c e s s e s  can h e  

d e r i v e d .  

METHOD 

The Redlich-Kwong e q u a t i o n  o f  s t a t e  h a s  been  a p p l i e d  t o  a p a r a -  

metric s t u d y  of h igh -p res su re  phase  e q u i l i b r i a .  A t  p r e s e n t  good 

r e s u l t s  i n  p r e d i c t i n g  phase  compos i t ions  are b e i n g  o b t a i n e d  u s i n g  

c e r t a i n  m o d i f i c a t i o n s  of  t h i s  e q u a t i o n  of s ta te  b o t h  i n  t h e  vapour  

phase  and i n  t h e  l i q u i d  phase  ( 1 0 -  16 ,  2 3 ) .  

With t h e  Redlich-Kwong e q u a t i o n  of state (18) 

- 
l p  = p r e s s u r e ,  V = molar  volume, T = t empera tu re )  and t h e  mixing 

r u l e s  f o r  t h e  c o e f f i c i e n t s  a and b 
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EQUILIBRIA FOR VAPOUR PHASE EXTRACTION 237 

b = c x i b i  (2)  
i 

(xi = mole f r a c t i o n ;  aii, b .  = Redlich-Kwong c o e f f i c i e n t s  of p u r e  

component i; Oij  = i n t e r a c t i o n  pa rame te r  between two components i 

and j ) ,  t h e  f u g a c i t i e s  f o f  component i c a n  b e  c a l c u l a t e d  f o r  t h e  

l i q u i d  ( I )  and vapour  phases  (") (17)  
i 

RTln  $ =J[($) - F ] d V -  RTln-  PV RT 
i T,V,n 

V j 

(3) 

The a p p l i c a t i o n  of t h e  c o n d i t i o n  f o r  phase  e q u i l i b r i a  

( 4 )  f ;  = f;; i = 1 , 2 .  . . K  

y i e l d s  a sys t em o f  e q u a t i o n s  which h a s  t o  b e  s o l v e d  by t r i a l  and 

e r r o r  ( 1 0 ) .  For  b i n a r y  systems (K = 2) t h e  mole f r a c t i o n s  x '  o f  

component 1 ( s u p e r c r i t i c a l  component) i n  t h e  l i q u i d  phase  and x'; i n  

t h e  vapour  phase can b e  e s t i m a t e d  i f  t h e  p r e s s u r e  ( p ) ,  t h e  temper- 

a t u r e  ( T ) ,  t h e  f o u r  c o e f f i c i e n t s  ( a  11, b l ,  a22, b2) and t h e  i n t e r -  

a c t i o n  pa rame te r  (0 ) are known 

1 

1 2  

X;,X: = f ( T , p , a l  

I n  Equa t ion  (5) t h e  compos i t ion  of a b i n a r y  i s o t h e r m  is  de- 

s c r i b e d  by f i v e  p a r a m e t e r s .  On t h e  o t h e r  hand i t  i s  obv ious  t h a t  

t h e  behav iour  o f  a b i n a r y  m i x t u r e  depends p r i n c i p a l l y  on t h e  d i f f e r -  

e n t  p h y s i c a l  behav iour  of t h e  p u r e  components. That  means t h a t  t h e  

s h a p e  o f  a b i n a r y  i s o t h e r m  must b e  p r i n c i p a l l y  c h a r a c t e r i z e d  by t h e  

r a t i o s  o f  t h e  p u r e  component pa rame te r s  and n o t  by t h e i r  a b s o l u t e  

v a l u e s .  T h i s  is t h e  b a s i c  i d e a  f o r  i n t r o d u c i n g  r a t i o s  of c o e f f i -  

c i e n t s  and d i m e n s i o n l e s s  p a r a m e t e r s  i n  Equa t ion  (5)  and f o r  reducing 

t h e  number of pa rame te r s .  
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238 STEPHAN AND SCHABER 

Using t h e  o r i g i n a l  Redlich-Kwong e q u a t i o n s  (18) 

( 6 )  
2 2.5 

a 11 = 0.427812 T cl /pel; b l  = 0.0867RTcl/pc1 

( r l c l  = c r i t i c a l  t e m p e r a t u r e  and p 

tile cos f  f i c i e n t s  a 11 and b l  of t h e  s u p e r c r i t i c a l  c a r r i e r  g a s ,  t h e  

system of Equa t ions  ( 5 )  c a n  b e  w r i t t e n  w i t h  t h e  d i m e n s i o n l e s s  p a r a m  

i'ters 

= c r i t i c a l  p r e s s u r e )  t o  eva lua te  
c l  

. V = v/vcl (7a)  c1 ' = p/pcl : ? = T / T  

ind w i t h  t h e  r a t i o s  of t h e  pu re  component c o e f f i c i e n t s  

Ai - - a i i / a l l  and Bi = b i / b l  

i n  t h e  f o l l o w i n g  g e n e r a l i z e d  form: 

K K  
A" = C c c x'!X' :JA,A_(l-o. . ) ;  

2 i= l  j = l  1 J 1 J 1 J  
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EQUILIBRIA FOR VAPOUR PHASE EXTPACTION 239 

K K 

i = l  i= 1 
B' = C C x ; B i ;  B" = C1 C x Y B i ;  

C1 = 0.0867/Zc1 and C2 = 0 . 4 2 7 8 / ( Z & K p )  

- 
V c l ,  TC1 and pcl are c r i t i c a l  v a l u e s  and Zc l  = p 

c r i t i c a l  c o m p r e s s i b i l i t y  f a c t o r  o f  t h e  s u p e r c r i t i c a l  component (1) .  

The v a l u e  of  Zcl  c an  b e  c a l c u l a t e d  from Equa t ion  (1) .  

s i o n l e s s  volumes 

Kwong e q u a t i o n  of s t a t e .  

v c1 c1 /RTC1 is t h e  

The dimen- 

and ?' a r e  g i v e n  by t h e  d i m e n s i o n l e s s  Redl ich-  

$3 - T $ 2 + ? ( A - B 2 - _ T _ B )  - A B = O  18b) 
"%P ".P 

?' must b e  c a l c u l a t e d  w i t h  t h e  pa rame te r s  A' and B ' ,  

pa rame te r s  A" and B". The system of Equa t ions  ( 8 )  is  s o l v e d  by 

t r i a l  and e r r o r " .  

and ?I, w i t h  

For  b i n a r y  systems Equa t ions  (8) can  b e  w r i t t e n :  

xi,x'i  = f ( '? ,p ,A2,B2,Ol2) .  (9)  

Compared w i t h  Equa t ions  (5) t h e  s h a p e  of a b i n a r y  p-x i s o t h e r m  

( T  = c o n s t )  can  b e  d e s c r i b e d  by o n l y  t h r e e  parametersA2,B2 and 0 12' 

B I N A R Y  SYSTEMS 

A l l  i m p o r t a n t  t y p e s  o f  b i n a r y  i s o t h e r m s  can  b e  g e n e r a t e d  by 

v a r i a t i o n  of t h e  p a r a m e t e r s  A*, B and 0 2 12'  Only i so the rms  such  a s  

"Due t o  a w e l l  s u i t e d  numer i ca l  method based  on Newton-Raphson- 
I t e r a t i o n  i t  i s  p o s s i b l e  t o  compute multicomponent systems w i t h  
two and  t h r e e  p h a s e s  u s i n g  l i t t l e  CPU-time. Fur the rmore ,  t h e  
computer program a l l o w s  one  t o  c a l c u l a t e  phase  e q u i l i b r i a  w i t h  
any low c o n c e n t r a t i o n s  of heavy components.  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



2 4 0  STEPHAN AND SCHABER 

bubble mint Line 1:; 
Jew point lin - 

FTGURE 1. Normal i s o t h e r m .  

t h a t  i n  F i g .  1 are  norma l ly  c o n s i d e r e d  i n  c o n n e c t i o n  w i t h  vapour  

plinse e x t r a c t i o n  p r o c e s s e s .  T h i s  i s o t h e r m a l  l i n e ,  w i t h  one c r i t i c a l  

p o i n t  CD1 and a second c r i t i c a l  p o i n t  C P 2  (dp/dx2 cp2= 07) i s  r e f e r r e d  

t L )  as ‘1 normal i s o t h e r m .  Between t h e  second c r i t i c a l  p o i n t  and t h e  

f i r s t  c r i t i c a l  p o i n t  t h e  s o l u b i l i t y  of component 2 i n  t h e  s u p e r c r i t -  

i c  ,il y>n; i n c r e a s e s  w i t h  i n c r e a s i n g  p r e s s u r e .  

Computer e v a l u a t i o n  shows t h a t  t h e  r a t i o  A 2 / B 2  d e t e r m i n e s  t h e  

mole f - r x t i o n  a t  t h e  second  c r i t i c a l  p o i n t  and t h e  r a n g e  of t h e  dew- 

p o i n t  iiisle f r a c t i o n s .  Hence, i t  i s  c o n v e n i e n t  t o  i n t r o d u c e  t h e  

r a t i o  h 2 / B 2  = AB as  a new p a r a m e t e r .  S u b s e q u e n t l y ,  b i n a r y  iso-  2 
tlierms :an be (desc r ibed  by means of  t h r e e  p a r a m e t e r s ,  AB2’ B Z ’  O I 2 .  

A t  c o n s t a n t  v a l u e s  of AB 

tile c r i t i c a l  p r e s s u r e  ( C P l ) .  

and  012 t h e  p a r a m e t e r  B 2  i s  a measlure of  
2 

A h i g h  v a l u e  of  B2 r e s u l t s  in a low 

c r i t i c a l  p r e s s u r e  and i n  a b o i l i n g  c u r v e  s i t u a t e d  i n  the r e g i o n  of  

l a r g e  mole fra1:tions xi as shown i n  F i g .  2 .  

i n t e r a c t i o n  pa rame te r  ( J ~ ~  a t  c o n s t a n t  v a l u e s  of  B 2  and AB2 produces  

51rnilar r e s u l t s .  With i n c r e a s i n g  v a l u e s  of O I 2  t h e  c r i t i c a l  p r e s -  

5iii-e i n c r e a s e s  and t h e  b o i l i n g  c u r v e  becomes d i s p l a c e d  towards  low 

molt f r n c t i o n s  x; o f  t h e  s u p e r c r i t i c a l  component i n  t h e  l i q u i d  

plinse (t’ig. 2 ) .  

A v a r i a t i o n  of t h e  

I n  a d d i t i o n  t o  t h e s e  normal i s o t h e r m s  t h e r e  are two o t h e r  i m -  

pc~r tnr i i  t y p e s  o f  i s o t h e r m s  € o r  vapour  phase  e x t r a c t i o n  p r o c e s s e s .  
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0.1 02 0.3 0.1 0.5 0.6 0.7 OB 0.9 1 
I # I  

x1 ' X ,  - 
FIGURE 2. I so the rms  a t  a c o n s t a n t  v a l u e  o f  AB2 = 5. 

- v a r i a t i o n  of B2(B 
-.-.- v a r i a t i o n  of 012 tO12 = -0.05 t o  0 . 1 ) ;  B2 = 3. 

- 2 t o  8 ) ;  012 = 0 .  

One t y p e  i s  c h a r a c t e r i z e d  by a maximum s o l u b i l i t y  (MS) of t h e  low 

v o l a t i l i t y  component i n  t h e  vapour  phase  as shown i n  F ig .  3. A t  

p r e s s u r e s  above t h e  maximum s o l u b i l i t y  p r e s s u r e ,  t h e  s o l u b i l i t y  of 

a low v o l a t i l i t y  component i n  t h e  vapour  phase  d e c r e a s e s  w i t h  i n -  

c r e a s i n g  p r e s s u r e .  It i s  p o s s i b l e  t h a t  t h e r e  e x i s t s  a c r i t i c a l  

p o i n t  a t  v e r y  h i g h  p r e s s u r e s ,  b u t  t h i s  h i g h  p r e s s u r e  r ange  i s  o f  

no i n t e r e s t  f o r  i n d u s t r i a l  s e p a r a t i o n  p r o c e s s e s  ( 2 4 ) .  A fewsystems 

of t h i s  t y p e  l i k e  C 0 2  - C30H62 , N 2  - NH3, o r  

d i s c u s s e d  by Schne ide r  ( 2 6 ) ,  Rowlinson (20 )  and Ttjdheide a n d F r a n c k  

C 0 2  - H 0 a r e  2 

( 2 7 ) .  

The t h i r d  i m p o r t a n t  t y p e  o f  i s o t h e r m  is  c h a r a c t e r i z e d  by a 

t h r e e  phase  r e g i o n ,  F i g .  4 .  A t  a c e r t a i n  p r e s s u r e  p" ' two l i q u i d  

phases  (11, 1 ) and a gaseous  phase  are formed. 

t h e m  o n l y  o c c u r s  a t  t empera tu res  n e a r  T = 1 (20) .  A p a r a m e t r i c  

Th i s  t y p e  of i s o -  
2 
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2 4 2  STEPHAN AND SCHABER 

MS 

dew p i n t  line 

CP 2 
I I 

(2) x1- (1 1 

FIGURE 3. I s o t h e r m  w i t h  maximum s o l u b i l i t y  (MS). 

c,tudy Trields ci l i m i t  f o r  t h e  v a l u e s  of  t h e  p a r a m e t e r s  Mi2, I1 and 2 
Iwyond which t h r e e  p h a s e  e q u i l i b r i a  o c c u r .  This l i m i t  i s  shown 

1 2 '  

2 
To demon- 

in  F i g "  5 .  At~ove t h e  dashed l i n e  t h e  v a l u e s  of t h e  p a r a m e t e r s  

md K c h a r a c t e r i z e  t h r e e  p h a s e  e q u i l i b r i a  f o r  012 = 0. - t ra t  P good c o n f o r m i t y  of e x p e r i m e n t a l  e x p e r i e n c e  and t h e  pa rame t r i c  

s t u d v  Ln F i g .  5 two p o i n t s  are  marked, which r e p r e s e n t  t h e  b i n a r y  

5ystem:; methane-pentane and methane-hexane. The method t o  es t imate  

the  v~ tues  AB ~ and  B2 f o r  t h e s e  s y s t e m s  i s  d i s c u s s e d  i n  t h e  fol lowing 

s e c t i o n .  A s  j-ound e x p e r i m e n t a l l y  (20)  t h r e e  phase  e q u i l i b r i a  o c c u r  

LII t h c  h i n a r y  sys t em methane-hexane b u t  n o t  i n  t h e  sys t em methane- 

pen tanc .  

2 

FIGURE 4 .  Three  phase  i s o t h e r m .  
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FIGURE 5. L i m i t  of b i n a r y  pa rame te r s  k B 2  and B2 f o r  t h r e e  phase 
i so the rms .  

DETERMINATION OF PARAMETERS AB?, B? and 017 

The v a l u e s  of pa rame te r s  AB2, B and E l l 2  of b i n a r y  systems a r e  2 
chosen t o  o b t a i n  s a t i s f a c t o r y  agreement w i t h  expe r imen ta l  d a t a .  

S i n c e  p r a c t i c a l l y  a l l  t h e  i n d u s t r i a l  vapour phase e x t r a c t i o n  pro- 

c e s s e s  a r e  c a r r i e d  o u t  w i t h i n  a t empera tu re  r ange  1<?<2 and a p re s -  

s u r e  r ange  0 . 5 < F < 1 5 ,  t h e  t a s k  is  s i m p l i f i e d  i n  t h a t  i t  is  n o t  

n e c e s s a r y  t o  d e s c r i b e  t h e  behav iour  of b i n a r y  mix tu res  o u t s i d e  

t h e s e  r a n g e s  w i t h  pa rame te r s  AB2, B and El l2 .  2 

The pa rame te r s  AB2 and B 2  depend on t h e  p r o p e r t i e s  of t h e  p u r e  

components. 

r e a s o n a b l e  accuracy by means of  Eqs. (6). Hence, f o r  t h e  estima- 

The c o e f f i c i e n t s  a 11 and b l  can b e  c a l c u l a t e d  w i t h  
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FIGURE 6 .  

1 0 

'9 

8 . 

7 :  

? 
i 

5 t  

.2 
1 6 8 10 12 1L 16 18 20 

Smoothed p a r a m e t e r s  AB2 and B2 of t h e  b i n a r y  systems 
methane-alkanes w i t h  012 = 0.  (References of e x p e r i -  
m e n t a l  d a t a  s e e  T a b l e  1 . )  

I- t = 100°F ( 3 7 . 8 O C )  
- - .- -_ - t = 700°F ( 1 4 8 . 9 O C )  

t i v n  of AR and €3 t h e  c o e f f i c i e n t s  a and b a r e  r e q u i r e d .  TO 

d6)termi;lr. t h e s e  c o e f f i c i e n t s  f o r  a low v o l a t i l i t y  component a t  d 

t m p e r a t u r e  f a r  below i ts  c r i t i c a l  t e m p e r a t u r e ,  Equa t ions  (6)  can- 

n o t  b e  a p p l i e d  s i n c e  t h e y  are o n l y  v a l i d  i n  t h e  c r i t i c a l  r e g j o n .  

Stzverat a d t h o r s  have s u g g e s t e d  t h a t  t h e s e  c o e f f i c i e n t s  ( a Z 2  and b ) 2 
si~~uld be de te imined  by f i t t i n g  Equa t ion  (1) t o  e x p e r i m e n t a l  s a t u -  

r a t i o n  d a t a  of p u r e  components and t h e y  developed methods f o r  t h i s  

plirpose (10-14). These methods produce t e m p e r a t u r e  dependent co- 

e f f  i c i e r i t s .  

2 2' 2 2  2 
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EQUILIBRIA FOR VAPOUR PHASE EXTRACTION 245 

I n  t h e  p r e s e n t  s t u d y  a s imple  method, as proposed by J o f f e ,  

Zudkevi tch and Schroede r  (13) ,  h a s  been used .  In t h i s  method co- 

e f f i c i e n t s  a 22 and b 2  are o b t a i n e d  from e x p e r i m e n t a l  vapour  p re s -  

s u r e s  and l i q u i d  d e n s i t i e s .  With pa rame te r s  AB and B c a l c u l a t e d  

from t h e s e  c o e f f i c i e n t s  i t  i s  norma l ly  p o s s i b l e  t o  o b t a i n  a r eason-  

a b l e  accu racy  i n  d e s c r i b i n g  a n  i s o t h e r m a l  dew p o i n t  l i n e  (24). How- 

e v e r ,  a b e t t e r  confo rmi ty  can  b e  o b t a i n e d  by f i t t i n g  t h e  pa rame te r s  

AB and B t o  e x p e r i m e n t a l  i s o t h e r m s .  For  a c o u p l e  o f  b i n a r y  sys -  

t e m s ,  AB and B have been f i t t e d  a t  v a r i o u s  t e m p e r a t u r e s  ( 2 4 ) .  

2 2 

2 2 

2 2 

These p a r a m e t e r s  were found t o  b e  rough ly  d i r e c t l y  p r o p o r t i o n a l  

t o  t h e  number of ca rbon  atoms w i t h i n  t h e  homologous series of a l -  

kanes  w i t h  methane a s  s u p e r c r i t i c a l  component ( F i g .  6 ) .  Based on 

t h e s e  r e s u l t s ,  t h e  unknown p a r a m e t e r s  AB2 and B2 of a sys t em w i t h i n  

a homologous s e r i e s  c a n  b e  e a s i l y  e s t i m a t e d  i f  v a l u e s  f o r  a few 

systems w i t h i n  t h e s e  s e r i e s  are known. I f  methane as a s u p e r c r i t -  

i c a l  component i s  r e p l a c e d  by a n o t h e r  g a s ,  e . g . ,  ca rbon  d i o x i d e , t h e  

pa rame te r s  AB2 and B2 of t h e  homologous s e r i e s  methane-alkanes must 

b e  m u l t i p l i e d  by t h e  r a t i o s  b CHb/bC02 and ( a h )  / ( a / b ) C O p  re spec -  

t i v e l y .  Good agreement  w i t h  e x p e r i m e n t a l  d a t a  c a n  b e  o b t a i n e d  w i t h  
CH4 

t h e s e  new v a l u e s  o f  AB 

a c t i o n  pa rame te r  012  d i f f e r s  from z e r o .  

and  B2, prov ided  t h a t  t h e  e s t i m a t e d  i n t e r -  2 

T h i s  pa rame te r  O I 2  c a n  b e  f i t t e d  t o  e x p e r i m e n t a l  b u b b l e  p o i n t  

d a t a  f o r  t h e  mix tu re .  The p a r a m e t e r  i s  c h a r a c t e r i s t i c  f o r  t h e  

i n t e r a c t i o n  between t h e  s u p e r c r i t i c a l  g a s  and o t h e r  components o f  

a n  homologous series and does  n o t  v a r y  w i t h i n  such  a series. For  

sys t ems  w i t h  ca rbon  d i o x i d e  and a l k a n e s ,  a v a l u e  o f O I 2  = 

o b t a i n e d .  For sys t ems  w i t h  e t h a n e  and a l k a n e s  t h e  i n t e r a c t i o n  

pa rame te r  i s  0 = - 0.01.  

E s p e c i a l l y  b i n a r y  systems w i t h  a l k a n e s  have  been i n v e s t i g a t e d  

0.11 w a s  

12 

s i n c e  a l a r g e  number o f  e x p e r i m e n t a l  d a t a  are a v a i l a b l e  f o r  t h e s e  

sys t ems .  I n v e s t i g a t i o n s  o f  o t h e r  sys t ems ,  however, y i e l d  similar 

r e s u l t s .  For  a l l  i n v e s t i g a t e d  sys t ems ,  i t  h a s  been  found t h a t  t h e  

pa rame te r  AB2 can b e  e s t i m a t e d  w i t h  good accuracy  from e x p e r i m e n t a l  
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246 STEPHAN AND SCHABER 

TABLE 1 

I n v e s t i g a t e d  Binary Systems (24) 

System Temperature I n t e r a c t i o n  Re f 
Range OC Parameter 0 12 

m e  thane-but ane 
-pent ane  
-hexane 
-hep t.ane 
-octane 
-nonane 
-decane 
-hexadecane 
-cyclohexane 
-benzene 
-water 

1 

1 ,  

1 

1 1  

, I  

1 ,  

t ,  

,, 

carbon d i o x i d e  
-butane 
-pent ane 
-decane 
-eicosane 
- w a t e r  

3 ,  

I !  

,I 

1 

ethane -pentane 
-hep tane 
- o c t .ane 
-decane 
-dodecane 
-eic3sane 

1 ,  

,1  

, 

1 1  

propane-decane 
1 1  -benzene 

hydrogen s u l f i d e -  
decane 

nih-o,:en -decane 
, I  -hexadecane 

-benzene 
-ammonia 

hydrogen-heptane 

ethylene-dodecane 
-e thanol  
-benzene 

R13-tetradecane 

! 

4.5  - 71.1 
37.8 - 104.4 
25 - 171.1 
4 .5  - 204.4 
25 - 50 
75 - 150 
37.8 - 237.8 
100 - 300 
21 .1  - 171.1 
65.6 
150 - 200 

37.8 
37.8 - 71.1 
37.8 - 104.4 
37.8 
50 - 200 

37.8 
65.6 - 121 .1  
40 - 75 
37.8 - 104.4 
50 - 100 
36 

71.1 - 137.8 
71.1 - 137.8 

104.4 - 2 7 1 . 1  

37.8 - 71.1 
250 
75 
4.5 - 37.8 

151 

25 - 75 
75 
75 

33 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.2-0.3 

0 . l l  
0 . l l  
0 . l l  
0.10 
0 .2  

0 
0 

-0.01 
-0.01 
-0.01 
-0.01 

-0.025 
0 

0 -045 

0.08 
0 . 1  
0.17 
0 .1  

-0.3 

0 
0 

0.01 

0.04 
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EQUILIBRIA FOR VAPOUR PHASE EXTRACTION 247 

vapour  p r e s s u r e  and l i q u i d  d e n s i t y  d a t a ,  b u t  t h e  p a r a m e t e r s  B 2  and 

012 must b e  f i t t e d  t o  t h e  e x p e r i m e n t a l  bubb le  p o i n t  l i n e  of t h e  

m i x t u r e .  T a b l e  1 g i v e s  a summary o f  t h e  i n v e s t i g a t e d  b i n a r y s y s t e m s  

T h i s  r e s u l t  is v a l i d  even f o r  a b i n a r y  sys t em c o n s i s t i n g  of w a t e r  

and  a s u p e r c r i t i c a l  component a t  h i g h  p r e s s u r e .  The system ca rbon  

d iox ide -wa te r ,  f o r  i n s t a n c e ,  h a s  maximum-solubili ty i s o t h e r m s  ( 2 2 ) .  

TERNARY SYSTEMS 

According t o  the phase  r u l e  of Gibbs a two-phase t e r n a r y  sys t em 

h a s  t h r e e  d e g r e e s  of freedom. I f  t h e  p r e s s u r e ,  t h e  t e m p e r a t u r e  and 

mole f r a c t i o n  of one component are f i x e d ,  t h e  f o l l o w i n g  r e l a t i o n -  

s h i p  f o r  d i m e n s i o n l e s s  pa rame te r s  is v a l i d :  

The s h a p e  of a t e r n a r y  bubb le  p o i n t  l i n e  o r  dew p o i n t  l i n e  a t  con- 

s t a n t  t e m p e r a t u r e  T and c o n s t a n t  p r e s s u r e  6 i n  t r i a n g u l a r  coor-  

d i n a t e s  depends on two sets of b i n a r y  p a r a m e t e r s  (AB 2 ,  B 2 ,  012 and 

A B 3 ,  B3, 013, which c h a r a c t e r i s e  t h e  b i n a r y  systems (1) - ( 2 )  and 

(1) - (3) )  and on a n  i n t e r a c t i o n  pa rame te r  O z 3  f o r  t h e  two low- 

v o l a t i l e  components (2)  and (3). 

Before  p r o v i d i n g  g e n e r a l  r u l e s  f o r  t h e  d e s i g n  of s e p a r a t i o n  

p r o c e s s e s  i t  i s  a p p r o p r i a t e  t o  d i s c u s s  v a r i o u s  t y p e s  of t e r n a r y  

systems i n  t r i a n g u l a r  c o o r d i n a t e s  e s p e c i a l l y  w i t h  r e g a r d  t o  t h e  

problem of how t h e  vapour  compos i t ion  changes by i n c r e a s i n g  t h e m o l e  

f r a c t i o n  of one component. I n  F i g u r e  7 b - f f i v e  i m p o r t a n t  t y p e s  

of t e r n a r y  vapour  l i q u i d  e q u i l i b r i a  w i t h  s u p e r c r i t i c a l  components 

are shown. The shapes  of t h e s e  v a r i o u s  dew and bubb le  p o i n t  l i n e s  

i n  t r i a n g u l a r  c o o r d i n a t e s  c a n  b e  e x p l a i n e d  i n  a f i r s t  approach by 

c o n s i d e r i n g  t h e  co r re spond ing  s i x  b i n a r y  systems i n  F i g u r e  'la. The 

t e r n a r y  sys t ems ,  shown i n  F i g u r e  7 b -  f ,  a r e  g e n e r a t e d ,  i f  t h e  com- 
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248 STEPHAN AM) SCHABER 

FIGURF 7 .  Types of t e r n a r y  system. 

_ _ _ _ _ _  ___ dew p o i n t  l i n e s  

"li 

bubb le  p o i n t  l i n e s  

= c r i t i c a l  p r e s s u r e s  
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EQUILIBRIA FOR VAPOUR PHASE EXTRACTION 249 

ponents ( 2 ) ,  (4), ( 5 ) ,  ( 6 ) ,  o r  ( 7 )  are added t o  t h e  b i n a r y  system 

1 '  (1) - (3 )  a t  a cons tan t  temperature  7 and a cons tan t  p r e s s u r e  6 
I f  component ( 2 )  i s  added t o  t h e  b inary  system ( 1 )  - (3) a t  a 

c o n s t a n t  p r e s s u r e  p1 and a c o n s t a n t  temperature  ?, a t e r n a r y  sys-  

t e m  w i t h  separa ted  dew and bubble  p o i n t  l i n e s  as shown i n  Fig.  7b 

is obta ined .  The s t a r t  and end p o i n t s  of t h e s e  l i n e s  correspond 

t o  t h e  b i n a r y  phase compositions a t  a p r e s s u r e  and a temperature  

T i n  F ig .  7a. These systems i n  which both  b inary  c r i t i c a l  pres-  

s u r e s  (CP12 and CP 

system are c h a r a c t e r i z e d  by decreas ing  mole f r a c t i o n s  x 3  of com- 

ponent (3)  i n  t h e  vapour phase w i t h  i n c r e a s i n g  mole f r a c t i o n  x 

component ( 2 ) .  

1 
) are h igher  t h a n  t h e  p r e s s u r e  p1 of t h e  ternary 13 

2 Of  

The c r i t i c a l  p r e s s u r e  of t h e  b i n a r y  system (1) - (4) a t  a con- 

s t a n t  temperature  T (CP14 i n  F ig .  7a) is lower than t h e  p r e s s u r e  

p1 of t h e  t e r n a r y  system. A t  t h i s  p r e s s u r e  no b i n a r y  phase equi- 

l i b r i u m  (1) - (4) e x i s t s ,  and a t e r n a r y  system shown i n  F igure  7c 

is  obta ined  w i t h  j o i n i n g  dew and bubble  p o i n t  l i n e s .  I n c r e a s i n g  

t h e  mole f r a c t i o n  x4 of component ( 4 ) ,  t h e  mole f r a c t i o n  x3 of com- 

ponent (3) i n  t h e  vapour phase decreases  u n t i l  a c e r t a i n  l i m i t  w i t h  

a minimum mole f r a c t i o n  x3 i n  t h e  vapour phase. 

3 
I n  comparison t o  t h a t ,  t h e  mole f r a c t i o n  x of component (3) i n  

t h e  vapour phase only i n c r e a s e s  by adding component (5) t o  t h e  

b i n a r y  system (1) - (3) as shown i n  F igure  7d. T h i s  behaviour  

occurs  i f  t h e  c r i t i c a l  p r e s s u r e  of t h e  b inary  system (1) - (5) i s  

low enough. By means of t h e s e  components t h e  vapour phase mole 

f r a c t i o n s  of t h e  low v o l a t i l e  components can be  enhanced enormously 

a s  a paramet r ic  s tudy  shows. I n  t h i s  i n v e s t i g a t i o n  t h e s e  compo- 

n e n t s  are c a l l e d  e x t r a c t i o n  suppor t  components. 

I f  a component ( 6 )  w i t h  a c r i t i c a l  p r e s s u r e  CP16 s t i l l  lower 

t h a n  t h e  c r i t i ca l  p r e s s u r e  CP15 i s  added t o  t h e  b inary  system (1) - 

( 3 ) ,  a m i s c i b i l i t y  gap (3) - (6)  occurs  i n  t h e  t e r n a r y  system as 

shown i n  Fig.  7e. This  means t h a t  t h e r e  e x i s t s  a b i n a r y  phase equi- 

l i b r i u m  i n  a system (3) - (6 )  a t  a temperature  ? and a p r e s s u r e  pl. 
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250 STEPHAN AND SCHABER 

Component (6 )  i s  a n  e x t r a c t i o n  s u p p o r t  component, t o o ,  h u t  t h e  con- 

c e n t r a t i o n  of  t h e  heavy component (3)  cannot  b e  enhanced so  much a s  

i n  t h e  s v s t e m  (1) - (3) - ( 5 ) .  Thus,  component (5) i s  b e t t e r  s u i t e d  

c t ~  an e x t r a c t i o n  s u p p o r t  component. If t h e  b i n a r y  c r i t i c a l  p o i n t  

( r , 7  o f  <I system (1) - (7 )  in F i g .  7a is s i t u a t e d  v e r y  low and f a r  

‘iway from t h e  p r e s s u r e  p1 of t h e  t e r n a r y  sys t em,  t h e  m i s c i b i l i t )  

yap  ( 3 )  - (7)  i n  t h e  t e r n a r y  sys t em i n  F i g u r e  7f i n c r e a s e s  so  much 

t h a t  the vapour  phase  c o n c e n t r a t i o n  x of t h e  heavy component 

c s s e n t i a l l y  does  n o t  change by a d d i t i o n o f  component (7 )  t o  t h e  

t ) i na rv  svstem (1) - ( 3 ) .  Such a component ( 7 )  c a n  b e  cons ide red  a s  

<i second s u p e r c r i t i c a l  c a r r i e r  g a s .  

3 

These above d i s c u s s e d  r e s u l t s  are o b t a i n e d  by v a r y i n g  t h e  char- 

a c t c r i ‘ t i c  p a r a m e t e r s  AB 2, R2, 012,  AB3, B3, O I 3  and of t e r n a r y  

5ystemC. The  method of v a r y i n g  t h e s e  g e n e r a l i z e d  pa rame te r s  w i t h i n  

c e r t a i r  r anges  i s  w e l l  s u i t e d  t o  s t u d y  t h e  g e n e r a l  behav iour  of 

tern‘ir)  and multicomponent m i x t u r e s ,  b e c a u s e  e x p e r i m e n t a l  d a t a  of  

l e r n a r )  and mill t icomponent sys t ems  w i t h  s u p e r c r i t i c a l  components 

a r e  h a r d l y  ava t i l ab le .  

Fur- t h e  d e s i g n  of s e p a r a t i o n  p r o c e s s e s  two i m p o r t a n t  problems-- 

t h e  s e p a r a t i o n  of two l o w  v o l a t i l e  components and t h e  c h o i c e  of a 

i u iLah  1 e e x t r a c t i o n  s u p p o r t  component -- are d i s c u s s e d  i n  the  f o l -  

I owiny s e c t i o n s .  

SEPARATION OF TWO LOW VOLATILE COMPONENTS __ 

Tn o r d e r  t o  deduce r u l e s  f o r  e s t i m a t i n g  t h e  e f f e c t i v e n e s s  o€ 

‘ ,eparaf i n g  two components of low v o l a t i l i t y ,  t e r n a r y  systems con- 

, i s t i n ( ;  of a s u p e r c r i t i c a l  g a s  (1)  and two l o w - v o l a t i l e  components 

( 2 )  and ( 3 ) ,  as shown i n  F i g .  7 b ,  have t o  b e  c o n s i d e r e d .  

(Component (2’1 i s  r e f e r r e d  t o  as t h e  e x t r a c t i v e  component arid com- 

nonent (3 )  a s  t h e  r e f i n e d  p roduc t  component.)  

A conven ien t  measure of t h e  e f f e c t i v e n e s s  of a s e p a r a t i o n  prccess 

1 9  t h f  r e l a t i v e  v o l a t i l i t y  a :  
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a = (x"x' ) / (x' XI' ) * 2 3  2 3  (11)  

Values  of t h e  r e l a t i v e  v o l a t i l i t y  a f o r  g e n e r a l i z e d  systems have 

been computed u s i n g  t h e  above pa rame te r s  a t  v a r i o u s  t e m p e r a t u r e s a n d  

p r e s s u r e s  (F ig .  8 ) .  

An impor t an t  r e s u l t  o f  t h i s  p a r a m e t r i c  s t u d y  can  b e  o b t a i n e d  by 

c o n s i d e r i n g  t h e  behav iour  of such a t e r n a r y  sys t em w i t h  t h e  com- 

ponen t s  (I), (2)  and ( 3 )  shown i n  F ig .  7b.  Th i s  system h a s  two 

m i s c i b i l i t y  gaps a t  a g i v e n  p r e s s u r e  p1 and t e m p e r a t u r e  T ;  t h a t  

means t h e  b i n a r y  m i x t u r e s  (1) - (2)  and (1)  - ( 3 )  form vapour  l i q u i d  

e q u i l i b r i a  a t  t h e  p r e s s u r e  p l .  I f  t h e  p r e s s u r e  p i n c r e a s e s  and 

exceeds  t h e  c r i t i c a l  p r e s s u r e  o f  one of t h e  b i n a r y  sys t ems  (CP 

CP13 i n  F i g .  7 a ) ,  a t e r n a r y  sys t em l i k e  t h a t  i n  F ig .  7c is formed 

and t h e  re la t ive v o l a t i l i t y  between t h e  components ( 2 )  and (3)  

d e c r e a s e s  c o n s i d e r a b l y .  T h e r e f o r e ,  t h e  o p e r a t i n g  p r e s s u r e  s e l e c t e d  

f o r  a vapour  phase  e x t r a c t i o n  p r o c e s s  a t  a g i v e n  t e m p e r a t u r e  shou ld  

b e  lower t h a n  e i t h e r  o f  t h e  c r i t i c a l  p r e s s u r e s .  Th i s  i m p l i e s  t h a t  

i n v e s t i g a t i o n s  of t e r n a r y  sys t ems  c a n  b e  r e s t r i c t e d  t o  t h o s e t e r n a r y  

sys t ems  such as shown i n  F ig .  7b,  w i t h  two m i s c i b i l i t y  gaps (1) - 

(2 )  and (1)  - ( 3 ) ,  where t h e  s t a r t i n g  p o i n t s  and t h e  end p o i n t s  of 

t h e  dew p o i n t  and b u b b l e  p o i n t  l i n e s  are de te rmined  by mole f r a c -  

t i o n s  of t h e  b i n a r y  systems (1) - ( 2 )  and (1)  - ( 3 ) .  

12 O r  

F u r t h e r  s t u d i e s  of t h e  r e l a t i v e  v o l a t i l i t y  i n d i c a t e d  t h a t  a t  

c o n s t a n t  t e m p e r a t u r e  and p r e s s u r e  t h i s  pa rame te r  c h i e f l y  depends on 

t h e  pa rame te r  r a t i o s  AB /AB and B / B  ( F i g .  8 ) .  N e v e r t h e l e s s ,  t h e  

r e l a t i v e  v o l a t i l i t y  a i s  a l s o  s t r o n g l y  a f f e c t e d  by t h e  i n t e r a c t i o n  

pa rame te r  O Z 3 ,  i n c r e a s i n g  w i t h  r i s i n g  v a l u e s  o f  0 

3 2  3 2  

23' 

I n  o r d e r  t o  d e t e r m i n e  f a v o u r a b l e  c o n d i t i o n s  f o r  s e p a r a t i n g  two 

l o w - v o l a t i l e  components ( 2 )  and ( 3 ) ,  t h e  e f f e c t s  of t e m p e r a t u r e  and 

p r e s s u r e  on t h e  r e l a t i v e  v o l a t i l i t y  must b e  known. These e f f e c t s  

a r e  i n d i c a t e d  by mole f r a c t i o n s  of t h e  l o w - v o l a t i l e  components i n  

vapour  phases  o f  t h e  b i n a r y  systems (1 )  - ( 2 )  and (1 )  - (3) a t  t h e  

p r e s s u r e  and t e m p e r a t u r e  of t h e  t e r n a r y  system. I n  o r d e r  to  o b t a i n  
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252 STEPHAN AND SCHABER 

* -  
FIGURE 8 .  R e l a t i v e  v o l a t i l i t y  01 as a f u n c t i o n  of t h e  r a t i o s  

AB3/AB2 and B3/B2 and v a r i o u s  v a l u e s  g f  p a r a m e t e r s  
AB3 and B3 a t  a c o n s t a n t  t e m p e r a t u r e  T = 1.1 and a 
c o n s t a n t  p r e s s u r e  $ = 2; 023 = 0 .  

-.-.-. B3 = 10, AB3 = 12 
-----_ B3 = 16, AB3 = 15. 

-- B3 = 12, AB3 = 15 

Large v a l u e s  of t h e  r e l a t i v e  v o l a t i l i t y  a, t h e  mole f r a c t i o n  of t h e  

e x t r a c t  component (2) i n  t h e  vapour  phase  of  t h e  b i n a r y  system ( 1 ) -  

( 2 )  shou ld  b e  s i g n i f i c a n t l y  l a r g e r  t h a n  t h e  mole f r a c t i o n  of t h e  

r e f i n e d  p roduc t  component (3) i n  t h e  vapour  phase  of t h e  b i n a r y  

s v y t e v  (1) - (3). Consequent ly ,  i n  o r d e r  t o  d e t e r m i n e  f a v o u r a b l e  

c o n d i t i o n s  f o r  t h e  s e p a r a t i o n  of two components ( 2 )  and (3) by a 

s u p e r c r i t i c a l  g a s  (l), t h e  dew p o i n t  l i n e s  of t h e  b i n a r y  systems 

(1) - ( 2 )  and (1)  - (3) must b e  known. 
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TERNARY SYSTEMS WITH TWO L I Q U I D  PHASES 

If t h e  pa rame te r  023 which c h a r a c t e r i z e s  t h e  i n t e r a c t i o n b e t w e e n  

two components (2)  and  (3 )  i s  g r e a t e r  t h a n  0 2 3  = 0.05,  a second 

l i q u i d  phase  is  formed i n  t h e  t e r n a r y  system ( 1 )  - ( 2 )  - ( 3 ) ,  Fig.  9. 

These th ree -phase  e q u i l i b r i a  can a l s o  be d e s c r i b e d  by t h e  Redl ich-  

Kwong e q u a t i o n  of s t a t e .  For  t h e s e  sys t ems  t h e  above d e f i n e d  

r e l a t i v e  v o l a t i l i t y  h a s  no rma l ly  h i g h  v a l u e s  and component (2)  can  

e a s i l y  b e  s e p a r a t e d  from component ( 3 ) .  The phenomenon o f a t e r n a r y  

t h r e e  phase  e q u i l i b r i u m  shown i n  F i g .  9 i s  a lways  connec ted  w i t h  

t h e  e x i s t e n c e  o f  a b i n a r y  l i q u i d  m i s c i b i l i t y  gap i n  t h e  system (2)- 

( 3 ) .  A b i n a r y  l i q u i d - l i q u i d  e q u i l i b r i u m  o c c u r s  a t  c e r t a i n  v a l u e s  

of t h e  pa rame te r s  AB 2, AB3, B2, 
y i e l d s  t h e  r e s u l t  shown i n  F i g .  10. The e x i s t e n c e  of a phase  

e q u i l i b r i u m  can h e  mainly c h a r a c t e r i z e d  by t h e  r a t i o s  AB /AB2 and 

B3/B2 .  

p r e s s u r e  r ange  of 0.5(p<10 and f o r  t h e  i n t e r a c t i o n  pa rame te r  0 2 r  0. 

With i n c r e a s i n g  v a l u e s  of C23, t h e  homogenous r e g i o n  d e c r e a s e s .  

B3, and OZ3. The p a r a m e t r i c  s t u d y  

3 
F i g u r e  10 i s  v a l i d  f o r  a t e m p e r a t u r e  r a n g e  of lcTc1.5,  a 

FIGURE 9.  Three phase  e q u i l i b r i u m  i n  a t e r n a r y  system. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



254  

I 

STEPHAN AND SCHABER 

FIGUKE 10. Ranges f o r  phase  e q u i l i b r i a .  

Both o f  t h e  two "2 Phases"  r e g i o n s  are c h a r a c t e r i z e d  
by v a p o u r - l i q u i d  and l i q u i d - l i q u i d  e q u i l i b r i a .  The 
c ross -ha tched  r e g i o n s  l a b e l e d  I and I1 are  t h e  s p r e a d  
i n  t h e  c a l c u l a t e d  v a l u e s .  

MULTICOMPONENT SYSTEMS - 

Mixtu res  c o n t a i n i n g  a c a r r i e r  g a s  and more t h a n t w o  l o w v o l a t i l e  

components c a n  b e  c o n s i d e r e d  a s  t e r n a r y  sys t ems  i f  t h e  l o w - v o l a t i l e  

components a r e  d i v i d e d  i n t o  e x t r a c t i v e  and r e f i n e d  p roduc t  com- 

ponent g roups .  Thus,  i n  t r i a n g u l a r  c o o r d i n a t e s ,  multicomponent dew 

p o i n t  and bubb le  p o i n t  r a n g e s ,  which a r e  l i m i t e d  by t e r n a r y  dew and 

bubble  p o i n t  l i n e s ,  can  b e  p l o t t e d .  Hence, r u l e s  s imilar  t o  t h o s e  

J r r  t e r n a r y  systems are v a l i d .  

A knowledge of t h e  dew p o i n t  l i n e s  of b i n a r y  systems c o n s i s t i n g  

o J  a r a r r i e r  g a s  and l o w - v o l a t i l e  components (1) - (2), (1) - ( 3 ) ,  

. . .  , (1) - ( K )  is  s u f f i c i e n t  f o r  t h e  d e t e r m i n a t i o n  of f a v o u r a b l e  
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EQUILIBRIA FOR VAPOUR PHASE EXTRACTION 255 

v a l u e s  of o p e r a t i n g  p r e s s u r e  and temperature  f o r  s e p a r a t i n g  mult i -  

component mixtures .  

APPLICATION OF EXTRACTION SUPPORT COMPONENTS 

To g e t  favourable  s e p a r a t i o n  c o n d i t i o n s ,  t h e  re la t ive vola-  

t i l i t y  CY of t h e  e x t r a c t i v e  product  component h a s  t o  be  a s  l a r g e  as 

p o s s i b l e .  Furthermore, t h e  mole f r a c t i o n  of t h e  e x t r a c t i v e  product  

component i n  t h e  vapor phase should n o t  be too  small ,  because then 

t o o  much carrier gas  h a s  t o  be  compressed t o  d i s s o l v e  th i scompownt  

To avoid t h i s  d i sadvantage ,  e x t r a c t i o n  suppor t  components can be  

used t o  i n c r e a s e  t h e  mole f r a c t i o n  of t h e  e x t r a c t i v e  component i n  

t h e  gaseous phase. Then, l a t e r  i n  a second s t a g e  of t h i s  separa-  

t i o n  process ,  t h e  e x t r a c t i o n  suppor t  component h a s  t o  b e  separa ted  

from t h e  e x t r a c t  ( 5 ) ,  

An e x t r a c t i o n  support  component has  t o  be chosen s i m i l a r  t o  

component (5) o r  (6 )  i n  Fig.  7d and e ,  To select a s u i t a b l e  ex- 

t r a c t i o n  support  component, F ig .  10 can be  used. I t  i s  f a v o r a b l e  

t o  s e l e c t  a component which y i e l d s  no m i s c i b i l i t y  gap i n  a b i n a r y  

system c o n s i s t i n g  of t h e  e x t r a c t i v e  component and t h e  e x t r a c t i o n  

support  component. The paramet r ic  s tudy  shows t h a t  f o r  t h o s e  two 

components v a l u e s  of parameter  r a t i o s  i n  t h e  homogenous r e g i o n  n e a r  

t r a n s i t i o n  zone I1 are s u i t a b l e .  I n  order  t o  estimate t h e  e f f e c -  

t i v e n e s s  of such processes  w i t h  e x t r a c t i o n  suppor t  components, 

systems w i t h  f o u r  components c o n s i s t i n g  of two low v o l a t i l e  com- 

ponents ,  a c a r r i e r  gas ,  and a n  e x t r a c t i o n  support  component have 

been i n v e s t i g a t e d .  The paramet r ic  s tudy y i e l d e d  t h e  fo l lowing  

r e s u l t :  i t  i s  p o s s i b l e  t o  i n c r e a s e  t h e  r e l a t i v e  v o l a t i l i t y  between 

t h e  r e f i n e d  and e x t r a c t i v e  product  components only i f  t h e  i n t e r -  

a c t i o n  parameter  between t h e s e  two components has  a l a r g e  value-- 

i . e . ,  i f  t h e s e  two components are very d i f f e r e n t  i n  t h e i r  chemical 

s t r u c t u r e  and p h y s i c a l  p r o p e r t i e s .  On t h e  c o n t r a r y ,  i f  s i m i l a r  

heavy components have t o  he  s e p a r a t e d ,  i t  can he expected t h a t  t h e  
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256 STEPHAN AND SCHABER 

t e l a t i g c  v o l a t i l i t y  d e c r e a s e s  enormously by u s i n g  a n  e x t r a c t i v e  

s u p p o r t  compo9ent. 

SUMMARY 

t l i i id  phase  e q u i l i b r i a  w i t h  one s u p e r c r i t i c a l  component have 

been i n v e s t i g i t e d  i n  o r d e r  t o  e s t a b l i s h  g e n e r a l  r u l e s  gove rn ing  

gapour phase e x t r a c t i o n  p r o c e s s e s .  A p a r a m e t r i c  s t u d y  w i t h  t h e  

Hedlich-Kwong e q u a t i o n  of s t a t e ,  reduced t o  c h a r a c t e r i s t i c  dimen- 

s ionl txss  p a r a m e t e r s ,  shows t h a t  r u l e s  f o r  e s t a b l i s h i n g  f a v o u r a b l e  

o p e r a t i n g  p r e s s u r e s  and t e m p e r a t u r e s  can be d e r i v e d  w i t h o u t  knowing 

tlie e ~ i c  t v a l u e s  or t h e  m i x t u r e  p a r a m e t e r s .  

For t h e  c l a s s i f i c a t i o n  of b i n a r y  sys t ems  t h r e e  p a r a m e t e r s  are 

( l i ed  and  methods f o r  e s t i m a t i n g  t h e s e  pa rame te r s  a r e  d i s c u s s e d .  

llie results of t h e  p a r a m e t r i c  s t u d y  of b i n a r y  systems i n d i c a t e  some 

r u l e s  f o r  c h a r a c t e r i z i n g  v a r i o u s  t y p e s  of b i n a r y  i s o t h e r m s .  I n  

o r d e r  t o  e s t i m a t e  t h e  e f f e c t i v e n e s s  of s e p a r a t i n g  two o r  more low- 

v o l a t i l e  components by a s u p e r c r i t i c a l  c a r r i e r  g a s ,  t e r n a r y  and 

"iiilticomponent m i x t u r e s  have been i n v e s t i g a t e d .  Types of t e r n a r y  

,~\ te ins  t h a t  are i m p o r t a n t  f o r  s e p a r a t i o n  p r o c e s s e s  are d i s c u s s e d  

i n  gt) i ieral  and two a p p l i c a t i o n s ,  t h e  s e p a r a t i o n  of two low v o l a t i l e  

components and t h e  use  of a n  e x t r a c t i o n  s u p p o r t  component, a r e  d i s -  

cussed i n  d e t a i l .  rhe r e s u l t s  of t h e  p a r a m e t r i c  s t u d y  of m u l t i -  

component m i x t u r e s  show t h a t  a knowledge of b i n a r y  s u p e r c r i t i c a l  

iaotherm behav iour  i s  s u f f i c i e n t  f o r  s e l e c t i n g  t h e  o p e r a t i n g  con- 

d i t i o n s  f o r  vapour  phase  e x t r a c t i o n  p r o c e s s e s .  

3 

il . . 
1 1  

Liqu id  

vapour  phase  

Redlich-Kwong c o e f f i c i e n t  of a m i x t u r e  

Kedlich-Kwong c o e f f i c i e n t  of a p u r e  component 
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a l l  

A 

Ai 
ABi 

b 

bi 

bl 

Bi 

f i  

B 

K 

n 

P 
i 

PS 
P 

6* 
‘K 1 
R 

Redlich-Kwong c o e f f i c i e n t  of a s u p e r c r i t i c a l  gas  

= a. . /a 

= A i f B i  

Redlich-Kwong c o e f f i c i e n t  of a mixture  

Redlich-Kwong c o e f f i c i e n t  of a pure component 

Redlich-Kwong c o e f f i c i e n t  of a s u p e r c r i t i c a l  gas  

= b/VK1 

= bi/bl  

u 11 

- 

f u g a c i t y  of a component i i n  a mixture  

number of c.omponents 

number of moles of  component i 

( b a r )  p r e s s u r e  

(bar )  vapour p r e s s u r e  

p / p K 1  
minimum p r e s s u r e  

c r i t i c a l  p r e s s u r e  of s u p e r c r i t i c a l  gas  

molar gas  cons tan t  

t. T (OC o r  K) temperature  

K l ’  t 

V 

V 

YK1 
V 

- 

- 

x1 

%1 

O i j  

c1 

1. 

2 .  

c r i t i ca l  temperature  of s u p e r c r i t i c a l  g a s  TK1 
(m3) volume 

molar volume 

c r i t i c a l  molar volume of s u p e r c r i t i c a l  gas  

= V/VK1 
mole f r a c t i o n  of component i 

c r i t i c a l  c o m p r e s s i b i l i t y  f a c t o r  of s u p e r c r i t i c a l  gas  

r e l a t i v e  v o l a t i l i t y  

i n t e r a c t i o n  parameterbe tweentwocomponents i  and j 
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